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For increasing values of the edge length there is a 
very noticeable decrease of the scattered intensity, as 
Fig. 12 shows very clearly. 

5. Conclusion 

The existence of lines or regions of discontinuity in 
the ordered structure of homogeneously oriented ne- 
matic liquid-crystal layers makes possible the setting 
up of dislocations of various kinds. We have shown 
that the shape of the small-angle scattering curves is 
mainly determined by the kind of dislocation configura- 
tion exhibited by homogeneously oriented nematic 
liquid crystals. As a consequence we have made a com- 
plete examination of the shape of the neutron scatter- 
ing curves at very small scattering vectors, of the order 
of 0.05~0.1 nm -1, for the most significant cases of 
dislocation configurations. 

This study gives a partial guide to the construction 
and the interpretation of scattering relations for any 
kind of possible dislocation configuration in homo- 
geneously oriented nematic liquid crystals, e.g. for sta- 
tionary straight edge dislocations, moving edge dis- 
locations, oscillating edge dislocations, curved disloca- 
tions and dislocation networks. 
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Fig. 12. Behaviour of the peak value of the scattered intensity 

versus the edge length 2a of the regular hexagon of a plane 
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Statistical fluctuations in counting rates etc., as well as defects in the structural model, can introduce 
bias in the estimation of parameters by least-squares refinements. Of the reslduaIs in common use, 
only unweighted R2 = ~,(Io-L) 2 is free from statistical bias. Order-of-magnitude estimates of the bias 
can be derived, but it seems better to avoid it by adjusting the weights. To the second order, refine- 
ment of R2 is unbiased if the intensity used in calculating the usual weights is not Io but -}(Io+2Ic). 
There seems to be no simple method of avoiding bias in RI. 

Introduction 

Estimates of quantities obtained by or from physical 
measurements may differ from the true values for one 
or more of three reasons. 

(i) Systematic errors (defects in the model). In crys- 

tallographic investigations these may include incorrect 
allowance for absorption or extinction, incorrect as- 
sumptions about atomic scattering factors or thermal 
motion, overloading of counters or amplifiers, and so 
on (Shoemaker, 1968; Wilson, 1973). 

(ii) Random errors. In crystallographic investiga- 



A. J. C. WILSON 995 

tions statistical fluctuation in counting rates is likely 
to be the largest random error, but there can be irreg- 
ular backlash in positioning mechanisms, and so on. 

(iii) Unnoticed inappropriateness of mathematical 
techniques, whereby random errors, of mean value zero 
in the raw data, become a systematic bias in the derived 
quantities. 

The present note is concerned with the third of these 
sources of error. 

Correlation of weights and intensities 

Wilson (1974), in the course of an investigation of the 
effects on crystallographic parameters of the neglect 
of dispersion, noticed that least-squares refinement of 
the overall scaling factor led to results that were sys- 
tematically low by an amount ½R1 when the residual 

R~-- ~_, w~(IFol-IFcl)Z/ ~ w~FZo (1) 

was used, the wx being weights. On the other hand, 
Lomer & Wilson (1975) found that statistical fluctua- 
tions did not produce a systematic bias in values of 
the overall scaling factor when the residual 

R2= Z w2(Io-I~)2/~ wzlZo (2) 
was used, the wz being weights. Both calculations rested 
on an implicit assumption that the weights are not 
functions of lo or I~. The use of unweighted residuals 
is not uncommon, but more frequently weights are 
assigned that are intended to be the reciprocals of the 
variances of (Fo-Fc) or (Io-Ic). These variances arise 
largely from statistical variations in the counting rates, 
thus depending on the background intensity and the 
intensity of the reflexion being measured, and often 
empirical additions are included, in order to make 
the distribution of the observed values of (Fo-Fc)/ 
a(F) or (Io-I~)/a(I) conform to a theoretical model. 
For a Poisson distribution of counts the variance of I 
is proportional to I, so that for Rz the variances should 
be a linear function of I, the constant term arising 
from the background and non-X-ray sources. The true 
background and the true intensity of reflexion are un- 
known, so that in estimating the weights the observed 
values are used, giving weights something like 

wz=(an + bhlo)- ', (3) 

where ah and bh are independent of the measured in- 
tensity, but may be functions of the Bragg angle or the 
indices of reflexion. Different investigators have used 
somewhat different forms; for typical examples see 
Shoemaker (1968), Abrahams & Keve (1971), and 
Sudarsanan & Young (1974). All have in common the 
property that the number used for the weight of the 
hkl reflexion is functionally dependent on the number 
used for Fo or lo, thus introducing a correlation be- 
tween the weight and the difference in structure factor 
or difference in intensity. 

One can now see why least-squares refinements mak- 
ing use of these residuals can produce systematic biases 

from statistical fluctuations of mean value zero. If Io 
is too small the weight is too large; if Io is too large 
the weight is too small, but the effect is not as great; 
the effect of a negative fluctuation is not entirely com- 
pensated by an equal positive one, giving a kind of 
rectifier effect. Wilson (unpublished, and probably not 
worth publishing, in view of the result in the next sec- 
tion) made a number of estimates of the magnitude of 
the bias for scaling, temperature and positional par- 
ameters for different residuals and different weighting 
schemes. There were difficulties with convergence of 
series, especially with the positional parameters, but 
it seemed that the bias in the scaling factor and the 
overall temperature factor were usually proportional 
to R, and that the bias in the fractional coordinates 
would ordinarily be in the fifth decimal place, but 
might sometimes affect the fourth, particularly for 
atoms in unsymmetrical environments. Since the bias 
arose from the correlation of statistical fluctuations in 
the observed intensities in (Io-Ic) and in the weights, 
he attempted to avoid it by using Ic instead of Io in (3) 
and variations on it. Bias, however, was not avoided, 
since there was now a correlation between the weights 
and I~. In several specific cases it turned out to be half 
as great and of the opposite sign; this suggested that 
~-(Io + 21~) as the intensity to be used in calculating the 
weights would remove the statistical bias. This con- 
jecture turns out to be correct for Rz, as the following 
argument shows. 

Refinement in R2 

In actual refinement procedures the denominators in 
(1) and (2) are either omitted or treated as constants 
while the parameters entering into the calculation of 
Ic are varied to minimize R. To simplify the notation, 
let us write I for Io, H for Ic, and drop the subscript 2. 
The procedure is then to minimize 

R= ~ w ( I - H )  z (4) 

with respect to the parameters. Let x be the amount by 
which some desired parameter differs from its unbiased 
value. The residual may be expanded in powers of x: 

R = R ( 0 ) +  Rxx+½Rxx xz + . . .  , (5) 

where the subscripts indicate differentiation and the 
derivatives are evaluated at x = 0. The value of x giving 
the minimum value of R is thus 

x= -Rx/Rxx+ . . . , (6) 

and the minimum value of R is not R(0) but 

Rmi n=R(O) .L 2 -zR~/Rx:,+ . . . .  (7) 

Since dw/dx=(dw/dH)(dH/dx),  differentiation of (4) 
gives 

R:,= ~ [wnHx(I- H)2-  2w(I -  g)Hx] , (8) 

R~x= ~ [WHHH~(I-- H)Z-4WHH:,(I - H 2) 
+ WHHxx(l-- H) z -  2w(I -  H)Hxx + 2wH~ ] .  (9) 
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The important term in the expression for Rxx is the 
final one, as the others vanish with ( I - H ) ,  while it 
remains practically constant. For a well refined struc- 
ture, therefore, it is sufficient to write 

Rxx=2 ~ wH~.  (10) 

The expression for Rx needs closer attention. If e is the 
actual statistical fluctuation in a particular observed 
intensity, and 6 is the actual amount by which the cal- 
culated intensity differs from the true value (because 
of defects in the model, incomplete refinement, etc.), 
I -  H = e -  6, and (8) becomes 

Rx= ~ [wn(e2--2e~+62)--2w(e--6)]Hx . (11) 

Expanding w as a power series in e and d and neglect- 
ing terms of third and higher orders in the small quan- 
tities gives 

R~ = ~ [WH e2 -- 4wne~ + wn(~ 2 - 2we - 2wle  2 

+ 2wc~ + 2wle6  + 2wnc~ 2 + . . . ] H  x . (12) 

The expected value (mean value over repetitions of the 
measurements) of e is zero, and if the number of ob- 
servations greatly exceeds the number of parameters 
to be determined the mean value of ed will also be zero. 
The expected value of the parameter is then, from (6), 

( x ) =  -½[ Z wH~] -~ Z [Wn(e2) + 3WH(~2) 
- 2w,(e z) + 2w(O) + . . .  ]Hx. (J 3) 

The terms in 6 may be useful in discussions of bias 
arising from defects in the model and systematic errors, 
but our present concern is with the statistical bias aris- 
ing from the terms in (ez). The coefficient of (e 2) is 

wn - 2wl, 

so that if the functional form of w can be chosen so 

(14) 

that 

Ow Ow 
--2 - -  (15) 

OH 01 

the coefficient of (e z) in each term in the sum in (13) 
will vanish and (to the second order in e) x will not 
be biased by statistical fluctuations. This is achieved 
if w is any function of ( I+  2H). In the final stages of 
refinement, therefore, it will be worthwhile to modify 
(3) to 

w2 = (ah + ½bhlo + Zbhlc)- 1, (16) 

and similarly for its variants, modifications that should 
not greatly complicate the refinement program. 

Refinement in R1 

Refinement in RI can be regarded as a special case of 
refinement in R2 with weights 

w2 = wx(V'Io + V'Ic) -2, (17) 

where the wl's are the weights that would have been 
used in RI. As one might expect from the additional 

complexity, there seems to be no simple recipe for 
avoiding statistical bias in refinement in R1 (except for 
modifications that turn it into an unnecessary compli- 
cation of refinement in R2), so it would perhaps be 
best to abandon it as a procedure when the highest 
attainable accuracy is desired. 

Discussion 

A disclaimer should be entered about what the pro- 
posal of replacing Io by ½(Io+2Ic) in the expressions 
for the weights does not do. It does not remove the 
statistical error in x arising from the statistical errors 
in the Io [the errors mentioned under (ii) in the Intro- 
duction]. It does remove, to the second order in e, 
biases of the type mentioned under (iii) of the Intro- 
duction. Third-order and higher terms have been ne- 
glected, and these may be of importance fol the very 
weak reflexions. A previous paper (Wilson, 1973) was 
concerned with the conditions under which refinement 
of different residuals would give the same results, not 
the conditions under which they would provide statis- 
tically unbiased estimates, and correlations between e 
and the weights were overlooked. 

A familiar example of the use of a simple alteration 
to remove bias in an estimate is the substitution of 
( n - 1 )  for n in expressions fol the variance or the 
standard deviation of the mean of a number of meas- 
urements [see, for example, Cram6r (1945) p. 351, or 
Hamilton (1964) p. 40]. The use of biased estimators 
of crystallographic parameters may perhaps explain 
some of the difficulties encountered, for example, by 
Sudarsanan & Young (1974) in applying the error anal- 
ysis of Abrahams & Keve (1971). 

I am indebted to Dr S. C. Abrahams, Professor D. 
W. J. Cruickshank, Professor M. M. Woolfson and 
Professor R. A. Young for helpful discussions and cor- 
respondence. 
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